

HANDGUNS AND HOTSPOTS: Spatio-Temporal Models of Gun Crime in Chicago, IL

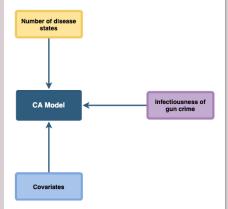
Advised by: Dr. Louis
Gross

Department of Ecology and Evolutionary Biology

RESEARCH OBJECTIVES

- Observe and predict the spatio-temporal spread of gun crime in Chicago, Illinois
- Apply methods of control to a cellular automata model and create evidence-informed policies

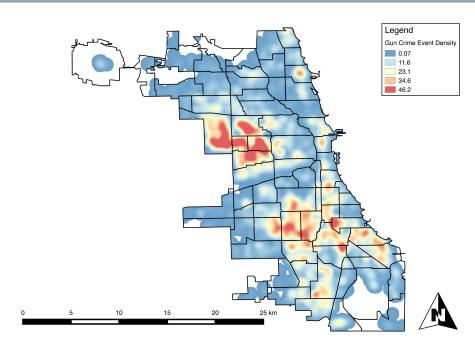
THE EPIDEMIC OF GUN VIOLENCE IN THE UNITED STATES


- . 33,000 deaths each year due to firearms
- Exposure to gun violence at a young age increases risk of chronic health conditions as an adult and increases likelihood for risky behavior in youth
- Gun violence costs the United States \$229 billion each year

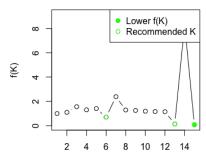
CHICAGO, IL AS A STUDY AREA FOR GUN VIOLENCE

- In 2012, Chicago had the highest number of citywide murders
- Ecological factors are associated with gun violence
- Between 2015 and 2016, there was a 68% increase in Chicago gun crimes, disproportionately affecting disadvantaged communities
- Most recent violence is carried out by teens and young adults, usually with illegal firearms

CELLULAR AUTOMATA (CA) MODELS


- Discrete in space and time
- Consist of a lattice of cells, each existing in a particular state
- Local rules determine how states update over time
- Our model is composed of a number of statistical models, each contributing to an overall cellular automata

For More Details and References:


OVERALL CONCLUSIONS

Conclusion: A cellular automata model informed by statistical models can be used to observe and predict the epidemic spread of gun crime in Chicago, IL.

DETERMINING THE APPROPRIATE NUMBER OF DISEASE STATES

f(k) finds 15 clusters

Number of clusters k

- Method: K-selection algorithm
- **Details:** The value of f(K) is the ratio of real distortion to estimated distortion and is close to 1 when the data distribution is uniform.
- Conclusions: We can divide the number of crimes per community area into 15 different crime categories and then into three different crime levels (low, medium, high)

Acknowledgments

Shelby M. Scott was supported by the Program for Excellence and Equity in Research (PEER): NIH Grant IMSD, # R25GM086761 and is now funded through the National Defense Science and Engineering Graduate (NDSEG) Fellowship.

Subset Selection of Socioeconomic Conditions

- Method: Negative binomial model with Bayesian subset selection
- Factors tested:
- Crowding
- Education level
- Poverty
- Dependents
- Unemployment
- Per capita income
- Results: Poverty, unemployment, and dependents are significantly associated with the number of gun crimes in each community area

Predictor	Coefficient
Poverty	1.0344
Unemployment	1.1123
Dependents	- 0 9477

$$\label{eq:log} \begin{split} \log(\text{\# Gun Crimes}) &= 4.1258 + 0.0338* poverty \\ +0.1064* unemployment - 0.0537* dependents \end{split}$$

EVALUATING THE INFECTIOUSNESS OF CHICAGO'S GUN CRIME

- Method: Bayesian spatio-temporal point process
- **Objective:** Differentiate between crime that is clustering but not diffusing and crime that is clustering and diffusing over a subset of data

$$\lambda(x, y, t) = m_0 \mu(x, y, t) + \theta \sum_{i: t_i < t} \omega \exp(-\omega(t - t_i))$$
$$\frac{1}{2\pi\sigma^2} \exp(-((x - x_i)^2) + (y - y_i)^2 / (2\sigma^2))$$

- Conclusions: If we were to observe 100 crimes at a given point in space and time, we expect the next 93 crimes that occur in a 1.96km radius and over 12 hours to have been triggered by previous crimes