Handguns and Hotspots

Spatio-Temporal Models for Gun Crime in Chicago, IL

Shelby Scott
Department of Ecology and Evolutionary Biology
University of Tennessee, Knoxville

2 April 2019

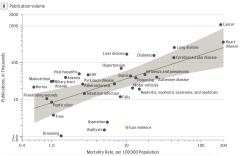
Acknowledgements

- Dr. Michael R. Kelly, Jr. and the Transy Department of Mathematics
- UTK Department of Ecology and Evolutionary Biology
- Dr. Louis J. Gross*, Dr. Nina Fefferman, Dr. Sergey Gavrilets, Dr. Suzanne Lenhart
- Funding: ASEE NDSEG Fellowship, NIH/NIGMS IMSD #R25GM086761

DEPARTMENT OF ECOLOGY & EVOLUTIONARY BIOLOGY

Overview

- Introduction
- Cellular Automata Models
- 3 A Cellular Automata Model of Gun Crime in Chicago, IL
- Conclusions and Future Work


Overall Research Goals

- Observe and predict the spread of gun crime in Chicago, Illinois, using data-informed cellular automata models
- Test ways to control the spread of gun crime in these models with a variety of intervention methods
- Switching gears: Share the importance of interdisciplinary work in the path to graduate school

The Cost of Gun Violence in the United States

- Gun violence costs the United States \$229 billion annually
- It leads to the death of 31,000 individuals and the non-fatal injury of 78,000 others
- Homicide is the leading cause of death in black males aged 10-24

- 80% of homicides involve the use of a firearm
- (Kellerman 1993) Having a gun in the home increases the risk for homicide occurring in the home
- (1996) Dickey Amendment removes CDC funding for gun violence research

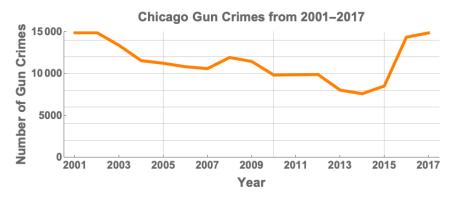
Individual Cost of Gun Violence

 Adults reporting exposure to gun violence as children showed an increased likelihood for chronic health conditions

Health Outcome	Risk Increase
Heart Disease	2.2
Cancer	1.9
Stroke	2.4
Chronic obstructive lung disease (COPD)	3.9
Diabetes	1.6
Hepatitis	2.4

Byrdsong 2016

Individual Cost of Gun Violence


 Exposure to community violence also affects mental health, substance use, school engagement, juvenile justice involvement, and STI risk behaviors in youth

Health Outcome	Risk Increase
Poor mental health	2.7
Delinquent behaviors	2.1
Involvement in juvenile justice system	3.5
Low school bonding	1.5
Poor student-teacher connectedness	1.7
Cigarette smoking	2.9
Ecstasy use	9.2
Codeine use	4.6
Alcohol consumption	2.2
Marijuana use	2.9
Use of substances during sex	6.5
Lack of condom use during sex	2.2
Unplanned pregnancy or impregnation	2.0

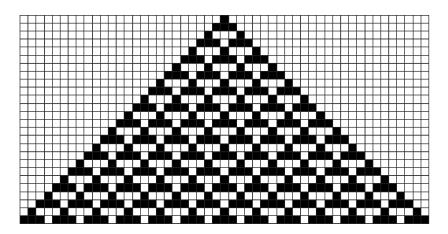
Voisin 2016

The Impact of Gun Crime in Chicago

- Past studies have shown a diffusion of gun crime in both space and time
- Between 2015 and 2016 there was a 68% increase in gun crimes, disproportionately affecting disadvantaged neighborhoods
- Data used for this study:
 - Chicago city crime dataset, 2001 2017
 - Selected socio-economic indicators in Chicago, 2008 2012

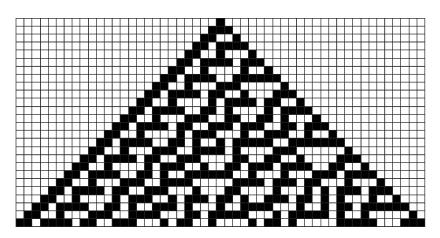
Cellular Automata

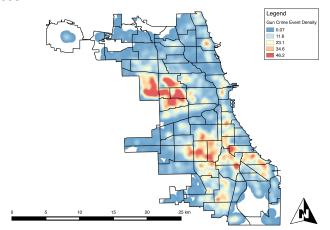
- *Cellular automata*: consist of a lattice of cells, each existing in a state. Simple local rules govern how these states change over time.
- Discrete in time and space
- Simplest CA: one-dimensional with two states "on" and "off."


time T	1	0	1	0	1	0	1	1	0	0	1
•						\forall		100			
time T+1	1	1	0	1	0	0	0	1	0	1	0

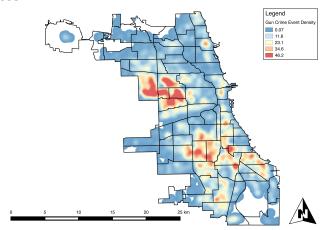
Sum	Example	New Value
5	11111	0
4	11101	1
3	01101	0
2	10001	1
1	01000	0
0	00000	0

http://eric_rollins.home.mindspring.com/introProgramming/hw5.html


Cellular Automata Models


Cellular Automata Models

Rule 30


Applying Cellular Automata to Gun Crime in Chicago

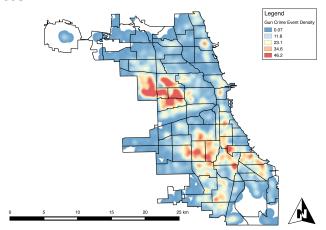
- Spatial units → community areas of Chicago
- Temporal units → weeks
- ullet Cell states o level of crime present
- Transition rules → depend on internal factors and on neighborhood influences

Applying Cellular Automata to Gun Crime in Chicago

- Spatial units → community areas of Chicago
- Temporal units → weeks
- Cell states → level of crime present
- Transition rules → depend on internal factors and on neighborhood influences

Which socio-economic conditions impact the number of gun crime events?

- Method: Negative Binomial Regression with Subset Selection
- Factors tested:
 - Crowding
 - Poverty
 - Unemployment
 - Education level
 - Dependents
 - Per capita income


Predictor	Coefficient
Poverty	1.0344
Unemployment	1.1123
Dependents	- 0.9477

Regression Results

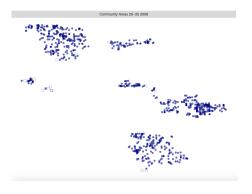
log(# Gun Crimes) = 4.1258 + 0.0338* poverty + 0.1064* unemployment - 0.0537* dependents

Applying Cellular Automata to Gun Crime in Chicago

- ullet Spatial units o community areas of Chicago
- Temporal units → weeks
- Cell states → level of crime present
- Transition rules → depend on internal factors and on neighborhood influences

How far does gun crime spread in both space and time?

- Method: Bayesian spatio-temporal point process (Loeffler and Flaxman 2017)
- Goal: Distinguish between clustered but non-diffusing gun crime and clustered gun crime resulting from diffusion


Conditional Intensity

$$\lambda(x, y, t) = m_0 \mu(x, y, t) + \theta \sum_{i: t_i < t} \omega \exp(-\omega(t - t_i)) \frac{1}{2\pi\sigma^2} \exp(-((x - x_i)^2) + (y - y_i)^2 / (2\sigma^2))$$

- Triggering kernels for both time (t) and space (x, y)
- $\mu(x, y, t)$: background intensity, weighted by m_0
- ullet θ : the average number of shootings triggered by any particular shooting
- σ: spatial length scale
- ω: temporal length scale

Results of Point Process

Subset of Chicago data

- Overall question: Do gun crimes "trigger" one another in space and time?
- Answer: yes
- For every 100 crimes observed at a given location, we expect the next 93 crimes that occur to be caused by the initial 100 crimes
- We expect them to happen very soon after (~12 hours) and within a close geographic radius (~1.6 km).

Control for Spatio-Temporal Models

- There is no consensus on how to use optimal control in spatio-temporal models
- Analogous systems method
 - Convert the spatio-temporal model
 - Find the optimal solution for the analogous system
 - Use this solution for the original spatio-temporal model
 - Check for agreement of average behavior between the two
- Simulation method: add a control parameter to the spatio-temporal model and determine conditions that lead to an optimal solution

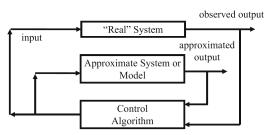
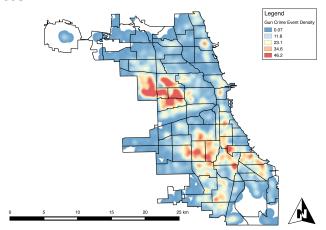
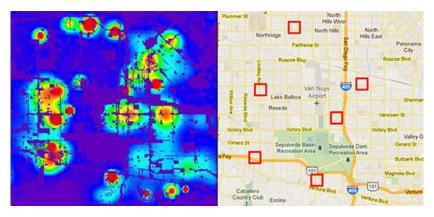



Fig. 2 Model-based control block diagram

Applying Cellular Automata to Gun Crime in Chicago

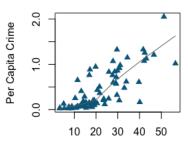
- Spatial units → community areas of Chicago
- Temporal units → weeks
- Cell states → level of crime present
- Transition rules → depend on internal factors and on neighborhood influences



Adding Intervention Strategies

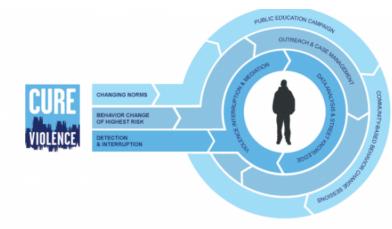
- Assess the impact of community-level interventions
- How does controlling each of the components in the model change the spread of gun crime?

Changing the level of crime present

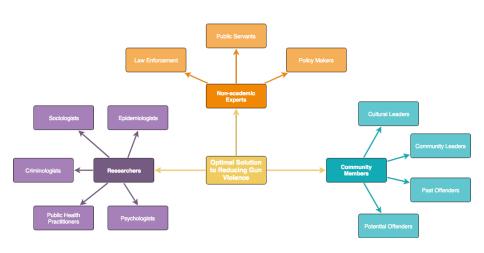

- There are ∼14 levels of gun crime present in community areas of Chicago, Illinois
- What happens if we remove the highest level of crime?
- Implementation: Increased policing in high-crime community areas

Changing the Internal Factors Present in Communities

- Socio-economic indicators affect gun crime in Chicago
- If we can reduce the impact of some of these factors, how can we change the spread of crime?
- Implementation: poverty and unemployment reduction programs


Per Capita Crime vs. Poverty

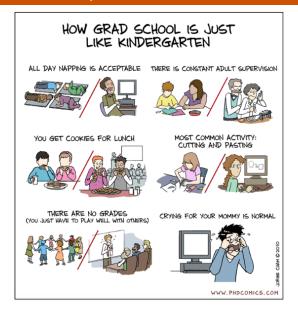
% Households in Poverty


Changing the Impact of Neighborhood Influences

- If we can reduce the infectious aspects of gun crime, can we control the spread?
- Implementation: Community intervention efforts

Conclusions

- Which socio-economic conditions impact the number of gun crime events?
 - Poverty (+)
 - Unemployment (+)
 - Dependents (-)
- Does crime diffuse in both space and time?
 - Yes
 - A majority of crimes are triggered by past crimes and future crimes occur relatively close to past crimes
- Control measures can be added to cellular automata models to determine where and when interventions should be deployed


Future Work

- Incorporate statistical results into cellular automata model
- Apply methods of control to cellular automata any ideas?
- Create evidence-based policy recommendations of how to best combat gun crime in Chicago
- Extend these ideas to other cities and countries to reduce the burden of firearm-induced violence

Questions?

Graduate School Explained

Things to do in Undergrad: Academic Edition

- Get involved with research:
 - Summer REU Programs
 - Internships and externships
 - Informal experiences
- Attend conferences
- Develop valuable skills:
 - LaTeX
 - Effective Oral and Poster Presentation
 - Coding
 - Teamwork
- Publish (if possible)
- Enroll in classes outside of STEM

Things to do in Undergrad: Non-Academic Edition

- Determine your work style
- Find an extra-curricular (or a few)
- Start to develop work-life balance

- Explore Lexington
- Establish a mentor/mentee relationship
- Develop a support system

Applying for Graduate School

- Step 1: Decide if graduate school is the right path
- Step 2: Question your conclusions from Step 1
- Step 3: Decide that graduate school is the right path
- Step 4: Look for graduate programs

- Once you have narrowed down your program options:
 - Check for any outstanding course work
 - Find professors you want to work under (and contact them)
 - Ask current graduate students their perspective
 - Look up career trajectories of past students
 - Determine funding
- Take the GRE (if necessary)
- Start working on applications ASAP

The Interim

- Following the application process:
 - Recruitment Weekend
 - Advisor interviews
 - Decision
- Second-semester senior slump
- Graduation

- Apply for external fellowships
- Prevent burnout
- Stay engaged in the field

How to Succeed in Graduate School

How to Survive in Graduate School: Academic Edition

- Stay organized
- Manage your time
- Establish mentor/mentee relationships
- Apply for fellowships
- Go to seminars
- Read, write, read some more, write some more



How to Survive in Graduate School: Non-Academic Edition

- Schedule in time to step away from your work
- Pick up a hobby (or a few)
- Fall in love with your new city

- Work socialization into your self care routine: your dissertation may be an individual event, but thriving in grad school is a team sport
- Use the resources available to you

Questions?

References

- American Psychological Association (2013) Gun violence: Prediction, prevention, and policy. Retrieved from http://www.apa.org/pubs/info/ reports/gun-violence-prevention.aspx
- Byrdsong TR, Devan A, & Yamatani H (2016) A Ground-Up Model for Gun Violence Reduction: A Community-Based Public Health Approach, Journal of Evidence-Informed Social Work, 13:1, 76-86, DOI: 10.1080/15433714.2014.997090
- Cook PJ, Parker ST, Pollack HA (2015) Sources of guns to dangerous people: What we learn by asking them, Preventive Medicine, 79:28-36, http://dx.doi.org/10.1016/j.ypmed.2015.04.021.
- Kellerman AL, Rivara FP, Rushforth NB, Banton JG, Reay DT, Francisco JT, Locci AB, Prodzinski J, Hackman BB, & Somes G (1993) Gun Ownership as a Risk Factor for Homicide in the Home, N Engl J Med, 329:1084-1091, DOI: 10.1056/NEJM199310073291506
- Kieltyka J, Kucybala K, Crandall M (2015) Ecologic factors relating to firearm injuries and gun violence in Chicago, Journal of Forensic and Legal Medicine, 37:87-90, http://dx.doi.org/10.1016/j.jflm.2015.11.003
- Mohler G (2014) Marked point process hotspot maps for homicide and gun crime prediction in Chicago, International Journal of Forecasting, 30(3):491-497, http://dx.doi.org/10.1016/j.ijforecast.2014.01.004.
- Winker MA, Abbasi K, Rivara FP (2016) Unsafe and understudied: the US gun problem, BMJ,352:i578, doi: http://dx.doi.org/10.1136/bmj.i578