An Agent-Based Model of Santa Cruz Island Foxes Provides Evidence of an Allee Effect

Erin N. Bodine¹, Shelby M. Scott¹, and Anne Yust²

¹Department of Mathematics & Computer Science Rhodes College, Memphis, TN ²Department of Mathematics Birmingham-Southern College, Birmingham, AL

2014 Hendrix-Rhodes-Sewanee Math & CS Symposium Rhodes College, Memphis, TN 5 April 2014 Santa Cruz Island Fox (Urocyon littoralis santacruzae)

The Allee Effect

- Agent-Based Modeling
- Modeling the Santa Cruz Island Fox Population
- 5 Future Work

The Island Fox

Descendants of the grey fox

- Monogamous
- Territorial
- Conservation Status Critically Endangered in 2004 Currently Near Threatened

Island Foxes on 6 of 8 California Channel Islands

Santa Cruz Island Foxes

Urocyon littoralis santacruzae

2005

Year

2010

Golden Eagle Predation

Island Spotted Skunk Competition

Rabies & Canine Distemper Virus

2000

1995

A biological theory which states that the fitness of an individual is positively correlated to its population density.

- Component: Individual Level effect
- Demographic: Population Level effect (shown in the graphs above)

ABMs are a class of mathematical/computational models in which individuals (or agents) are **unique and autonomous entities** that can **interact with other indivduals and with their environment**.

- Simulate island foxes in space and time based on stochastic decisions
 - Movement
 - Establiment of territories *Territory size:* ~0.55 km² *Patch dimensions:* 0.74km × 0.74km
 - Breeding

Mating success Fecundity Genetics

Coded ABM in NetLogo

Agent-Based Model (ABM)

Santa Cruz Island Fox Population

Start simulation with 30 individuals (1:1 sex ratio), randomly selected ages, randomly placed (some placed in mated pairs). Run simulation 100 times.

Agent-Based Model (ABM)

Santa Cruz Island Fox Population

Start simulation with 20, 30, and 50 individuals (1:1 sex ratio), randomly selected ages, randomly placed (some placed in mated pairs). Run simulation 100 times.

Agent-Based Model (ABM)

Santa Cruz Island Fox Population

Start simulation with 20, 30, and 50 individuals (1:1 sex ratio), randomly selected ages, randomly placed (some placed in mated pairs). Run simulation 100 times.

Santa Cruz Island Fox Population

Introduce genetic component: Decrease in probability of successful mating occurs when a female carries a detrimental recessive allele Tested two conditions:

- Only homozygous recessive genotypes cause decrease
- Homozygous recessive & heterozygous genotypes cause decrease

% of samples with negative yearly per capita growth rate for $P_t < 100$

	$P_0 = 20$	$P_0 = 30$	$P_0 = 50$
No Genetic Effect	52.5	48.9	48.7
Homozygous Recessive Only	53.5	52.0	52.9
Homozygous Recessive + Heterozygous	55.1	56.6	55.5

- In our stochastic ABM the Allee effect is manifest as an increased probability of having a negative yearly per capita growth rate at low population sizes
- The Allee effect was an emergent property of our Santa Cruz Island Fox ABM
- The Allee effect was exacerbated by
 - the presence of a detrimental recessive allele
 - lower initial population sizes

- Incorportate other influences on fox population into the ABM Received a grant to work on incorporating golden eagle dynamics into the model over this summer
- Quantify the impact of the many factors in Santa Cruz Island fox decline *Predation Competition Disease*

Collaborators

Erin N. Bodine

Rhodes College

Anne Yust

Birmingham-Southern College

Jim Crowder Birmingham-Southern College (student)

Huda Qureshi Birmingham-Southern College (student)

Allison Russel Birmingham-Southern College (student)

Funding Sources: Rhodes College, Birmingham-Southern College, and The Associated Colleges of the South for providing student stipends and travel funding

Publication: The 2013 Proceedings of the Symposium on Biomathematics and Ecology: Education and Research (BEER)